Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes.

نویسندگان

  • J Blaszczyk
  • Y Li
  • H Yan
  • X Ji
چکیده

The crystal structure of guanylate kinase (GK) from yeast (Saccharomyces cerevisiae) with a non-acetylated N terminus has been determined in its unligated form (apo-GK) as well as in complex with GMP (GK.GMP). The structure of apo-GK was solved with multiwavelength anomalous diffraction data and refined to an R-factor of 0.164 (R(free)=0.199) at 2.3 A resolution. The structure of GK.GMP was determined using the crystal structure of GK with an acetylated N terminus as the search model and refined to an R-factor of 0.156 (R(free)=0.245) at 1.9 A. GK belongs to the family of nucleoside monophosphate (NMP) kinases and catalyzes the reversible phosphoryl transfer from ATP to GMP. Like other NMP kinases, GK consists of three dynamic domains: the CORE, LID, and NMP-binding domains. Dramatic movements of the GMP-binding domain and smaller but significant movements of the LID domain have been revealed by comparing the structures of apo-GK and GK.GMP. apo-GK has a much more open conformation than the GK.GMP complex. Systematic analysis of the domain movements using the program DynDom shows that the large movements of the GMP-binding domain involve a rotation around an effective hinge axis approximately parallel with helix 3, which connects the GMP-binding and CORE domains. The C-terminal portion of helix 3, which connects to the CORE domain, has strikingly higher temperature factors in GK.GMP than in apo-GK, indicating that these residues become more mobile upon GMP binding. The results suggest that helix 3 plays an important role in domain movement. Unlike the GMP-binding domain, which moves toward the active center of the enzyme upon GMP binding, the LID domain moves away from the active center and makes the presumed ATP-binding site more open. Therefore, the LID domain movement may facilitate the binding of MgATP. The structure of the recombinant GK.GMP complex superimposes very well with that of the native GK.GMP complex, indicating that N-terminal acetylation does not have significant impact on the three-dimensional structure of GK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains.

CASK is a member of the membrane-associated guanylate kinases (MAGUK) homologs, a family of proteins that scaffold protein complexes at particular regions of the plasma membrane by utilizing multiple protein-binding domains. The GK domain of MAGUKs, which shares high similarity in amino acid sequence with yeast guanylate kinase (yGMPK), is the least characterized MAGUK domain both in structure ...

متن کامل

Structural characterization of the closed conformation of mouse guanylate kinase.

Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir and anticancer prodrugs such as the thiopurines are dependent on GMPK for their activation. Hence, structural information on mammalian GMPK could pl...

متن کامل

Guanylate kinase of Escherichia coli K-12.

We have identified the gene gmk, in the same operon as rpoZ, spoT, and recG at about 82 minutes on the Escherichia coli chromosome. The gmk (GMP kinase) gene encodes a peptide of 23,592 Da, possessing extensive similarity to the amino acid sequence of guanylate kinase from yeast. To confirm that gmk truly encodes guanylate kinase and to explore some of its enzymatic features, we have overproduc...

متن کامل

Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation

Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simul...

متن کامل

Structure of Staphylococcus aureus guanylate monophosphate kinase

Nucleotide monophosphate kinases (NMPKs) are potential antimicrobial drug targets owing to their role in supplying DNA and RNA precursors. The present work reports the crystal structure of Staphylococcus aureus guanylate monophosphate kinase (SaGMK) at 1.9 A resolution. The structure shows that unlike most GMKs SaGMK is dimeric, confirming the role of the extended C-terminus in dimer formation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 307 1  شماره 

صفحات  -

تاریخ انتشار 2001